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Chapter 2

Pattern Matching Analysis in a Nutshell

2.0 Introductory Notes

The proposed framework of pattern matching analysis has a number of interesting
features. I summarize below its notable appeals.

• It provides a foolproof method for the analysis/description of natural lan-
guage syntax.

• The descriptions provided by it are based on surface-true generalizations
alone, rather than UG-based highly abstract (and sometimes absurd) con-
structs.

• It provides a new perspective on representation of linguistic units, and
provides some insights into a theory of “emergent” grammar, which is
presumably learnable.

• It is compatible with connectionist research of the mind, not “terminolog-
ically” but “substantially”.

To be faithful, it is necessary to substantiate each of those claims, but there are
many difficulties in doing so. First of all, it would be inappropriate to launch into
details of the proposed framework, without familiarizing readers with its basics.
This is because the proposed framework assumes drastically different things about
linguistic structure, especially the representation of linguistic units. Thus, it is more
reasonable and practical to provide readers with an intuitive grasp of how pattern
matching analysis goes and works. For this reason, I decided to make discussions
in this chapter as basic as possible.

2.1 How Pattern Matching Analysis Goes

In this section, sample analyses are performed to familiarize readers with the pro-
posed framework.
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2.1.1 Analysis of Ann asked (Bill) the way

It is a theoretical claim of PMA that the necessary and sufficient condition for the
formation of a surface form F from a set of units {u1, ..., un} is a set of position-
sensitive dependencies for all component units in u. For illustration, take (1) for
example.

(1) Ann asked (him) the way.

Call (1) form F. PMA assumes that F is a composition from the set:

(2) U = {Ann, asked, (him), the way}

For the purposes of syntax, the necessary and sufficient condition for (1) is the
set of conditions:

(3) On a certain scale, there is pattern S V (X) O such that:
i. Ann matches S

ii. asked matches V
iii. (him) matches (X)
iv. the way matches O

S, V, and O roughly encode “subject”, “verb”, and “object”. I assume here and
elsewhere that (X) is a special kind of O, distinguished from O, both syntactically
and semantically.

Under this condition, a pattern matching analysis of (1) is given as (4).

(4) 0. Ann asked (him) the way
1. Ann V (O)
2. S asked (X) O
3. S V (him) O
4. S V (X) the way

An encoding tables like (4) is called a composition/decomposition table  (C/D table
for short). I claim that they encode necessary and sufficient information to specify
syntactic structures of surface formations. Details of a C/D table will be discussed
in Chapter 3 and Appendix A.

2.1.2 Remarks

Encoding tables (4) are proposed to replace tree diagrams. The conception of a
C/D table is innovative, and requires some remarks on it.

Let me establish the terminology first. In (4), the topmost row, with index 0, is
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called the base pattern. Other rows, with indices 1, 2, 3, and 4 are called subpat-
terns. Subpatterns encode structures of words.

My interpretation of tables like (4) is that subpatterns are declarative state-
ments which express correlations between grammatical functions like S, V, O , and
their positions relative to a pattern like SV(X)O. For example, in (4):

(5) i. 1 states that Ann is S if it is followed by a unit that serves as V on cer-
tain scale, which itself precedes an O , if any;

ii. 2 states that asked is V if it follows a unit that serves as S on certain
scale, that precedes it and serves as S, to precede O, on the other;

iii. 3 states that (him)  is an optional O if it is preceded by a unit of S V (on
certain scale) and postcedes V, which postcedes S.

iv. 4 states that the way  is O if it is preceded by S V (O).

Thus, if we see subpatterns 1, 2, 3 and 4 as statements declaring “constraints” to
be “relaxed”, this system could be adequately characterized as a multiple con-
straint satisfaction system.

Turn to other relevant ponits. In (1), bracketing is used to denote disjunction.
This means that (1) describes both of the following:

(6) a. Ann asked the way.
b. Ann asked him the way.

Thus, (1) matches syntactic pattern SV(X)O if the way matches O. Furthermore,
(1) matches another pattern SV(X)O9O if the and way match O9 and O, on the
other, provided that O9 encodes determiner. Details of patterns will be discussed
later.

Formation in (1)  may serve as a parse model for formations such as in (7).

(7) a. Ann asked (Bill) how to go there.
b. Ann asked (Bill) what to pick up.

(1) serves as one of the parse models for (7), because of parallelisms such as:

(8) i. the (as D) ≈ that (as C)
ii. way (as N) ≈ Ø to (go there) (as M (for matrix) = S V)

I will discuss the notion of parse model in subsequent chapters.

2.1.3 Optimal redundancy in specifications

The entire program of PMA relies on a crucial assumption:
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(9) There are optimally redundant (perceptual) schemas for syntax.

Optimal redundancy is a notion hard to define, but let me note a few points.
Note crucially that an alternative analysis exists that the following table encodes
instead of (4).

(10) 0. Ann asked (him) the way
1. Ann V (X) O
2. S asked (X) O
3. S V (him) O
4. S V (X) the way

Thus, the question is, What principles make us to prefer the specification in (4)
over the “richer” specification in (10), despite the fact that both systems are redun-
dant?

My answer is that those statements in (10) are too specific in that they are too
general. Indeed, they are specialized for a particular syntax (and abstract seman-
tics) of S V (X) O. To show this, it would be useful to note that the specification in
(10) is incompatible with the syntax and semantics of kiss, for example. If we are
forced to make a pattern matching analysis of kiss on the basis of the statements in
(10), then we will have the following:

(11) 0. Ann kissed Ø him
1. Ann V (X) O
2. S kissed (X) O
3. S V Ø O
4. S V (X) him

This encoding wrongly states that kiss is a verb that instantiates S V (X) O , thereby
admitting *Ann kissed Mother him (presumably, in the sense of Ann kissed him for
(the sake of) Mother).

This suggests that the argument structure of kiss, if any, is not S V (X) O but S
V O. This confirms that schemas that are too general do not work properly for our
purposes. Useful schemas should be optimally redundant.

What subpatterns are optimal, howevr? PMA claims that optimally redundant
schemas take the form of basic subpatterns, such as:

(12) S V (O) for V in general, with elaborations such as:
i. S V (e.g., John laugh)

ii. S V O (e.g., John killed his baby)
iii. S V (X) O (e.g., John asked (him) the way)
iv. S V X O (e.g., John gave him the paper)

(13) S V (O) for S in general, with elaborations such as:



Chapter 2 27

i. S V (e.g., John smiled)
ii. S V O (e.g., there is a mistake in your paper)

(14) S V O for O in general, with elaborations such as:
i. S V O (e.g., You saw him)

ii. S V (X) O (e.g., Ann asked (him) the way)
iii. S V (X) O (e.g., Ann asked (him) the way)
iv. S V X O (e.g., Ann gave him a bicycle)
v. S V X O (e.g., Ann gave him a bicycle)

The list here is shown for purposes of illustration, and is not intended to exhaust
all basic patterns of English syntax.

It is important to note that some of those basic subpatterns, e.g., those in (12),
are analogous to argument structures (Grimshaw 1990). The similarity for its great
theoretical importance, and some of the interesting issues raised by the similarity
are discussed in Chapter 4. I note however that they are not the same. First, there
are other basic subpatterns, such as those in (13) and in (14), that have nothing to
do with verbs. I argue that subpatterns in (13) and in (14) are irreducible to argu-
ment structure.

Second, in PMA, prepositions are encoded as subpatterns.

(15) S P  (O) for P  in general, with elaborations such as:
i. S P (e.g., take it up)

ii. S P  O (e.g., put it on the desk)

(15)i describes the class of “intransitive” prepositions, to which I assume the class
of “particles” corresponds. Some prepositions such as off belong to both (15)i and
ii.

It is important to note that most syntactic descriptions can be greatly simpli-
fied if the classes of verbs and prepositions are generalized. PMA posits a general
class R (for relational terms) to subsume V and P , such that:

(16) S R (O) for R, = {V, P}1

i. S R for intransitives
ii. S R O for transitives

Admittedly, the generalzation is partial, because no ditransitive prepositions are
ever known.

One of the most important consequences of this generalization would be that:

(17) Prepositions have “subjects” of their own.

This has a number of interesting effects. As I will show in Chapters 5 and 6, syntac-
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tic descriptions can benefit from this simple generalization.
To those “lexically based” subpatterns discussed above, one should add “func-

tionally based” subpatterns, called shifters, such as:

(18) i. what S (U) V d(what)
i9. what (U) V
ii. who S (U) V d(who)

ii9. who (U) V
iii. how S (U) V O d(how)
iv. d(that SV) V that S V, where d(that SV) realizes as preparatory

Shifters will be discussed in Section 2.2.2 in some detail, and in Chapter 3 and
Appendix A in greater detail.

In addition to those in (18), more lexically specified shifters should exist, such
as:

(19) i. S V pick dX up X
ii. S V take dX off X

Licensers of these (cataphoric) shifters are up and off, respectively.
These shifters should be distinguished from those in (20), where the leftward

displacement of X is licensed by C (rather than up and off).

(20) i. X (C) S V pick d(X) up
ii. X (C) S V take d(X) off

These shifters are responsible for so-called topicalization, exemplified by like the
following:

(21) a. The ticket for the concert, John failed to pick up.
b. That strange hat, Thelonious did never took off.

Under some examples given above, I should be noted explicitly that it is still
unclear and under scrutiny what subpatterns are possible. No general restrictions
on subpatterns are not found yet, though some relevant discussions will be present-
ed in Appendix B relating to the “learnability” of language.

2.2 How Pattern Matching Analysis Works — A More
Advanced Analysis

Turn now to a more complicated example for a better understanding of how PMA
works.
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From a very practical point of view, PMA consists in a method that assigns an
encoding scheme in (23) to (22), which PMA assumes is the exact form of (7)b,
repeated here for convenience.

(7) b. Ann asked (Bill) what to pick up.

(22) Ann asked (Bill) what Ø1 to pick Ø2 up

(23) 0. Ann asked (Bill) what Ø1 to pick Ø2 up
1. Ann V (O)
2. S asked (O) O
3. S V (Bill) O
4. S V (O) what S V d(what)
5. C Ø1 V
6. C S to V (O)
7. C S (U) pick O P
8. C S (U) V Ø2

9. C S (U) V P up

For the ease of comprehension, I will review below some basic properties of C/D
table in (23).

2.2.1 Relativized categorization

Very roughly, S corresponds to what is usually called “subject”, V to (main)
“verb”, O  to “object”, and U to “auxiliary”, distinguished from main verb. C
encodes the class of complementizer (e.g., that).

The question arises of how those “labels” are assigned. Some basic points will
be briefly discussed in Section 2.3, and more details will be discussed in Chapter 3
and Appendix A.

2.2.2 Shifters

Specification in subpattern 4, S V what S V d(what), deserves a special mention,
since it has to do with a well-known case of syntactic movement, which is one of
the greatest concerns of syntactic theory.

S V what S V d(what), which I will call an (anaphoric) shifter, gives a “sche-
matic encoding” of what available for contexts like:

(24) i. Ann asked (Bill) ___ to pick Ø up
ii. Chris said ___ you can’t believe Ø

iii. ___ you found on my desk is a novel of Borges

Shifters take the form of either (i) X Y d(X), where d(X) is anaphorically
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bound by X, or (ii) d(X) Y X, where d(X) is cataphorically bound by X. In both
cases, d(X) realizes either as a gap, Ø, or as a personal (resumptive) pronoun (e.g.,
he) or an impersonal pronoun (e.g., dummy it).

In the case under question, SV what SV d(what) is an instance of anaphoric
shifter X Y d(X) in that X = what, Y = S V and d(X) = Ø , putting aside effects of
the matrix SV that subordinates it.

Shifters are a special case of overriders in that they override certain subpat-
terns. Specifically, what John read Ø “overrides” John read it, or *John read
what. More generally, X S V d(X) overrides S V X, irrespective of the acceptability
of S V X as such. In this sense, overriders are “parasitic” subpatterns that can be
effective only when they override other subpatterns.

I will show in subsequent chapters that most real “displacement” phenomena
like wh-movement are described in terms of such shifters. One may wonder why
even PMA needs such “dirty tricks” as shifters. The reason is as follows: Generally,
to say that there are movements is to say that there are structures that some princi-
ples move “material(s) of”, whether they are moved “blindly” or, alternatively, to
satisfy conditions on well-formedness, which are independently given. In develop-
ing PMA, I found that it is impossible to reduce all kinds of movements into one
single sort of notion. Some cases of movements should be described as “effects” of
the (logical) satisfaction of well-formedness conditions, which are best understood
as “surface structure constraints” in the sense of Perlmutter (1971), or output
conditions in the sense of Ross (1967). Arguments in Chapters 5 and 6 will show
that effects of cases like Raising, LF movement, are well characterized in this way.
Nothing is moved in such cases. Some other cases, subsuming so-called wh-
movement, are different. To describe them, PMA needs a special kind of subpat-
terns called overriders.

2.2.3 Structure-building by making use of overlaps

The analysis in (23) claims that the syntax for (22) is determined by overlaps
among subpatterns 1, 2, ..., 9. Because this is one of the most important assump-
tions in the proposed framework, let me give a few notes on it.

The C/D table in (23) can be subdivided into two groups of subpatterns, one is
the set of {1, 2, 3, 4}, responsible for substring Ann asked Bill what, and another is
the set of {4, 5, 6, 7, 8, 9}, responsible for substring what to pick up. The role of
subpattern 4 = S V (O) what S V is important because it is shared by the two sets,
thereby “bridging” the two groups.

To clarify essential points, it is helpful to notice to abstract properties of a C/D
table. For example, consider an abstract formation F = abcde. Its minimum syntax
is encoded in the following table, where the relative order of units is determined by
making use of overlaps among aB , AbC, ABc, AdE, and ADe.
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(25) 0. a b c d e
1. a B
2. A b C
3. A B c
4. A d E
5. A D e

Figure 2.1 below visualizes two implicit groupings (two squares) with respect to
overlapping at c.

b

a

d

g

Figure 2.1

Interestingly, the groupings correspond to the domains of “dominance” determined
by b (= AbC) and d (= CdE ). So, specifications in a C/D table are so “grouped”
that there can be as many “squares” as relational terms such as V and P.

One can find an asymmetry in grouping. In Figure 2.1, fewer specifications are
found in area a than in area b, in that b is usually full of specifications. Likewise,
fewer specifications are found in area g than in are d. This is admittedly a contro-
versial point, but I suspect that it is because co-occurrence restrictions function
differently when on the right and on the left. Leaving details to later discussions in
Chapter 3, let me give brief notes on it.

PMA distinguishes between two sorts of “licensing”. In the n3n matrix of
subpatterns like (25), ri ,j (i < j) states a “demand” of the ith unit on the jth unit,
whereas ri,j (i > j) states an “admission” from the ith unit for the jth unit. For exam-
ple, (25)1 = aB states that there must appear some unit to match B at the right of a.
Psychologically, this is a “suspension” for a unit of category B. This suspension is
created by the recognition of aB . In contrast, such suspension has nothing to do
with specifications on the left. For example, (25)3 = ABc allows units of A and B
sorts to appear in the specified order, without demanding them to be there. In
other words, ABc only admits the realizations of A and B on the left.

This asymmetry affects the way that implications are utilized. In specifications
on left-hand side, implications can be fully utilized. For example, if Bc and AB are
both true, then ABc must hold. In fact, the exact meaning of ABc is that Bc holds
as far as the condition AB  is met.

This gives a hint for resolving the language learning paradox. As far as “discov-
ery procedure” is concerned, ABc is preferable over Bc, despite the fact that ABc is



32 PMA in a Nutshell

apparently more complex than Bc. Note that simpler is not always better. Logical-
ly, Bc is implicationally weaker, and more importantly, harder to verify, than ABc.
In other words, more simplicity in structural description should lead to more dif-
ficulty in learning what is so described.

This proposed use of (logical) implications in a statement is impossible for
specifications on the right-hand side. The reason is that possible implications are
not established yet because there are suspensions. This is why we find areas a and
g scarce.

2.2.4 Linguistic effects of overlapping

If there are overlaps among subpatterns, it is possible to make a “chain” of as
many subpattern as possible. For illustration, let me give an abstract example of
abcbcbc.

(26) 0. a b c b c b c
1. a B (C)
2. A b C
3. A B c
4. A b C
5. A B c
6. A b C
7. A B c

It is easy to identify in this table local groupings, such as:

(27) i. g1 = {2, 3}, g2 = {4, 5}, and g3 = {6, 7}
ii. g19 = {1, g1}, g29 = {3, g2}, and g39 = {5, g3}

iii. h1 = {1, 2}, h2 = {3, 4}, and h3 = {5, 6}

It is clear that those groups have linguistic counterparts, such as follows:

(28) i. g1 corresponds to a VP, and g2 and g3 to “adjuncts”.
ii. g9 corresponds to “clause”, at least potentially.

iii. h corresponds to “generalized matrix”.

Though (26) is abstract, it is admitted to find a few hints for linguistics by general-
izing it:

(29) i. A corresponds to “subject” and C to “object”.
ii. D = {A, C} is the class of NP.

iii. B corresponds to class R of “relational” terms, i.e., a superclass of V and
P.
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The distinction (29)i implicitly encodes the subject/nonsubject asymmetry.

2.3 Decomposing Patterns by Diagonalization

In this section, I detail the steps required to arrive at the pattern matching analysis
in (23), searching for the syntactic structure of (22). In addition to this, I discuss
how diagonalization works as a method for decomposition of pattern into subpat-
terns, or simply pattern decomposition.

For example, consider (22), repeated here for convenience.

(22)[=(7)b] Ann asked Bill what to pick up.

PMA assumes that (22) corresponds to a formation:

(30) Ann asked Bill what Ø1 to pick Ø2 up.

PMA assumes that (30) results from the following set W:

(31) W = {Ann, asked, Bill, what, Ø1, to, pick, Ø2, up}

By surface formations, I mean structures like (22), which are given as phenome-
nological entities.

Note that what (22) represents, if anything, is phenomenological in its nature,
and can never be mental. Thus, phonetics is relevant to (22), and irrelevant to (30).
This implies that there must be a function r that converts (22) into (30) for compre-
hension, on the one hand, and another function p that converts (30) into (22) for
production.

Conceptually, representations like (30) are analogous to the notion of “surface
structures” (or S-structures) in the generative literature. This begs a question. What
is the difference of (30) from (22), then? My position is that what is irrelevant for
linguistic purposes is orthographic representations like (22) rather than those like
(30).

Controversially, PMA counts “gaps”, denoted by Ø , as words. Gaps are “less
than lexical items”, in that they have semantics and phonology of their own, there-
by serving as “wild cards” that are able to match any unit.

PMA rejects to gratuitously appeal to syntactic movement, but this does not
mean that PMA refuses to recognize gaps. Metatheoretically, there is a wealth of
evidence to suggest that gaps are psychologically real. Indeed, there is a gap any-
where some material is felt to be “missing”.2 This makes clear that gaps are mental
and could not be readily detected in terms of phonetics.

Theoretically, there is no necessity to assume that gaps are created by syntactic
movements. Gaps should be independently motivated. My tentative position is that
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gaps are underspecified lexical material, semantically and phonetically, based on a
(mis)interpretation of underspecification theory (Archangeli 1984, 1988).

2.3.1 Encoding contexts for words

Pattern matching analysis assumes that “words” in (31) are nothing but subpat-
terns 1 through 9 in the following, obtained by a method called diagonalization.

(32) 1. Ann asked (Bill) what Ø to pick Ø up
2. Ann asked (Bill) what Ø to pick Ø up
3. Ann asked (Bill) what Ø to pick Ø up
4. Ann asked (Bill) what Ø to pick Ø up
5. Ann asked (Bill) what Ø to pick Ø up
6. Ann asked (Bill) what Ø to pick Ø up
7. Ann asked (Bill) what Ø to pick Ø up
8. Ann asked (Bill) what Ø to pick Ø up
9. Ann asked (Bill) what Ø to pick Ø up

For expository purposes, we say that this encoding scheme is the diagonalization of
(30).

Each subpattern in (32) encodes a word in a (syntactic) context (of sentence),
or an environment for its occurrence. For example, (32)4 encodes the occurrence of
what, as a “context-free” unit, in the context of Ann asked Bill __ Ø to pick Ø up .
For expository purposes, let j(u) denote the context for unit u. With this, it is easy
to see that nine subpatterns in (32) specify nine pairs of the form (u, j(u)), as fol-
lows:

(33) 1. (Ann, j(Ann))
2. (asked, j(asked))
3. (Bill, j(Bill))
4. (what, j(what))
5. (Ø 1, j(Ø1))
6. (to, j(to))
7. (pick, j(pick))
8. (Ø 2, j(Ø2))
9. (up, j(up))

One of the most crucial, and unusual, assumptions of PMA is that (syntactic)
contexts themselves can be represented and generalized. A more explicit assump-
tion is this:

(34) For a given unit u, pair (k(u), j(u)) gives the proper representation of u,
where k(u) specifies u’s semantic and phonological contents, or more



Chapter 2 35

adequately u’s substance, and j(u) denotes a context for u’s occurrence.

Such generalization of contexts has to do with a crucial characteristics of the brain.
It is plausible to think that the associative nature of the memory makes words
“remember” where they occur. In fact, there is a part/whole relation between u (or
k(u)) and j(u).

What dispenses with phrase markers into which lexical items are inserted is
exactly the incorporation of some effect of associative memory into the definition
of words. I claim that this is exactly what syntactic structure “emerges” from.

2.3.2 Subindexing convention

The analysis in (32) does not reflect scale effects, by which one observes a variety
of phrases. For example, note that there are as many segmentations of (22) as
different scales on which analysis is made. Some of them are:

(35) i. [ Ann ][ asked ][ Bill ][ what Ø1 to pick Ø 2 up ]
ii. [ Ann ][ asked ][ Bill ][[ what ][ Ø 1 to pick Ø2 up ]]

iii. [ Ann ][ asked ][ Bill ][[[ what ][[ Ø1 ][ to pick Ø2 up ]]]
iv. [ Ann ][ asked ][ Bill ][[[ what ][[ Ø1 ][[ to ][ pick Ø 2 up ]]]]

To encode the effects of the segmentation in (35)iv, for example, the C/D table in
(32) is modified as follows:

(36) 1. Ann asked Bill what Ø1 to pick Ø2 up
2. Ann asked Bill what Ø1 to pick Ø2 up
3. Ann asked Bill what Ø1 to pick Ø2 up

4.1 Ann asked Bill what Ø1 to pick Ø2 up
4.2.1 Ann asked Bill what Ø1 to pick Ø2 up

4.2.2.1 Ann asked Bill what Ø1 to pick Ø2 up
4.2.2.2 Ann asked Bill what Ø1 to pick Ø2 up

Here, pick Ø up is analyzed as a simplex, VP-equivalent.
In (36), relevent scale effects are encoded by means of subindexing that gives

indices such as 4.1, 4.2.1, 4.2.2.1. The following convention is assumed:

(37) Index i.j.k indicates:
i. the subpattern so indexed is the ith segment at the lowest resolution;

ii. the subpattern is the jth subsegment of the ith unit; and
iii. the subpattern is the kth sub(sub)segment of the jth subsegment of the ith

segment.

With this convention, (36) is understood as an abbreviatory notation for the follow-
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ing:

(38)
1.0.0.0 Ann asked Bill what Ø1 to pick Ø2 up
2.0.0.0 Ann asked Bill what Ø1 to pick Ø2 up
3.0.0.0 Ann asked Bill what Ø1 to pick Ø2 up
4.1.0.0 Ann asked Bill what Ø1 to pick Ø2 up
4.2.1.0 Ann asked Bill what Ø1 to pick Ø2 up
4.2.2.1 Ann asked Bill what Ø1 to pick Ø2 up
4.2.2.2 Ann asked Bill what Ø1 to pick Ø2 up

This implies that the exact meaning of (35)iv, for example, is the following:

(39) [[[[ Ann ]]]][[[[ asked ]]]][[[[ Bill ]]]][[[[ what ]]]][[[[ Ø 1 ]]]][[[[ to ]]]][[[[
pick Ø 2 up ]]]]

This may look strange, but the reason will be made clearer by discussion in the
next section.

2.3.3 Multiple parallel parsing as self-organization

Pattern matching analysis countenances the idea of parallel parsing on multiple
scales, in conformity with “connectionist” theories of the mind and the brain. To
see this, it will be helpful to appeal to the diagram in Figure 2.2, which shows how
F = Ann asked Bill what to pick up (= (22)) is parsed on nine different scales from
the discourse-scale parse at the top to the word-scale parse at the bottom.
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Ann asked (Bill) what Ø to Ø up

scale 1 (and depth 0)

scale 9

scale 8

scale 7

scale 6

scale 5

scale 4

scale 3

scale 2 (and depth 1)

S

S

S

S

S

S

S

S

V

V

V

V

V

V

V

V

OO

O(X)

(X)

(X)

(X)

(X)

(X)

O´

O´

O´

O´

O´

S

S

S

S

V

U

U

U

V

V

V

O

PO

O

?

pick

Figure 2.2

The topmost node need not be identified even if it can be the same as O  at the
rightmost node on scale 5. Thick links indicate units’ identities across scales, to
which I call scale-invariance. For this reason, what this diagram describes is differ-
ent from what rewrite rules generate. This property should account for the
“strange” bracketing in (39). It shows nesting of degree 4 (e.g., [[[[ Ann ]]]) be-
cause it is an analysis on the scale 7 relative to the scale 4. Generally, an analysis
on the scale m relative the scale n shows nesting of degree (m – n + 1). Thus, the
analysis on scale 9 relative to the scale itself if given as (40), without contradiction
to (39).

(40) [ Ann ][ asked ][ Bill ][ what ][ Ø1 ][ to ][ pick ][ Ø2 ][ up ]

Note that F = Ann asked Bill what Ø1 to pick Ø2 up matches eight patterns on
scales 2-9, though some of them are controversial.

(41) i. SV matches F on scale 2.
ii. SVO matches F on scale 3.

iii. SV(X)O matches F on scale 4.
iv. SV(X)O9O matches F on scale 5, where O9 is a “dummy” of O, and a

sort of “determiner” of SV.3

v. SV(X)O9SV, matches F on scale 6.
vi. SV(X)O9SUV, matches F on scale 7.

vii. SV(X)O9SUVO, matches F on scale 8.
viii. SV(X)O9SUVOP, matches F on scale 9.
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It should be emphasized here that what diagrams like those above specify is concep-
tually different from what most linguists believe “trees” specify. First of all, in the
proposed conception, patterns on different scales parse in parallel, though in inter-
action with each other.

This diagram illustrates how units on different scales correspond to each
other. Parsing in terms of multi-scale pattern matching is a sort of self-organization
that starts from an “disorderly” state, where all possible relations exist, to an
“orderly” state, as diagrammed in Figure 2.2.

Thus, hierarchical organization, which is usually assumed, is not fully responsi-
ble for different parses on different scales. Between two adjacent scales, only “sim-
plification rules” or possibly interaction schemas are posited. Under the assump-
tion that categorization assumes adjacency, rules of simplification are as follows:

(42) Given two adjacent units, a and b, on scale i, either rule (i) of “vacuous”
simplification, (ii) of simplification, or (iii) mutation (or replacement)
apply:

i. a and b, without simplification, correspond to a9 and b9, respectively, on
scale i + 1; or

ii. a and b, with simplification, correspond to either a9 or b9 on scale i + 1.
iii. a and b correspond on scale i + 1 to c by replacement of ab by c (c ≠ a,

b).

For an example of mutation, consider the difference in categorization of to.  On
scale 9, where units are words, to is categorized as U. On other larger scales, it is
“merged” into V.

Without detailed discussion, I note that the system described in (42), which
results in the structure in Figure 2.2, could be characterized as a Lindenmeyer
system.4 I will give a brief discussion on this issue in Chapter 3.

2.4 Composing (Sub)patterns by Superposition

Putting aside scale effects, columnwise unification, or equivalently superposition,
of the subpatterns in (36) results in composite pattern 0 in (43), called base pattern,
which is equated with the representation of (30).
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(43) 0. Ann asked Bill what Ø to pick Ø up
⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

1. Ann asked Bill what Ø to pick Ø up
2. Ann asked Bill what Ø to pick Ø up
3. Ann asked Bill what Ø to pick Ø up
4. Ann asked Bill what Ø to pick Ø up
5. Ann asked Bill what Ø to pick Ø up
6. Ann asked Bill what Ø to pick Ø up
7. Ann asked Bill what Ø to pick Ø up
8. Ann asked Bill what Ø to pick Ø up
9. Ann asked Bill what Ø to pick Ø up

Unification operator is denoted by ⇑.
In a sense, the most practically relevant question in pattern matching analysis

is: What is the procedure to determine details of a schema-based encoding like (23),
starting from an item-based encoding like (43) here?

2.4.1 Reducing redundancy by schematization

The necessary and sufficient conditions of pattern matching of (22) is to obtain a
schematic encoding table (23), where specifications are made in schematic terms of
grammatical functions and/or categories like S, V, O .

(23) 0. Ann asked (Bill) what Ø1 to pick Ø2 up
1. Ann V (O)
2. S asked (O) O
3. S V (Bill) O
4. S V (O) what S V d(what)
5. C Ø1 V
6. C S to V (O)
7. C S (U) pick O P
8. C S (U) V Ø2

9. C S (U) V P up

Here, S encodes subject, V verb, O object, U auxiliary, D determiner, and N (head)
noun.

(23) should be contrasted with the itemic encoding table in (32) (and (36)),
where specifications are made in terms of lexical items, Ann, asked, Bill, what, Ø,
to, pick, up, Ø.

2.4.2 Conversion of token-based to type-based encoding

Thus, the most practically relevant question is: What is the procedure for determi-
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nation of variables, or categories, so that an analysis arrives at (23)?
My answer is, most abstractly, that determination into a schematic encoding

table (23) from an itemic encoding table (36) is to assign appropriate labels to ri,j in
(45), under the condition (44).

(44) u1,1 = Ann,
u2,2 = asked,
u3,3 = Bill,
u4,4 = what,
u5,5 = Ø,
u6,6 = to,
u7,7 = pick,
u8,8 = Ø,
u9,9 = up

(45) 0. u1 u2 u3 u4 u5 u6 u7 u8 u9

⇑⇓ ⇑⇓ ⇑⇓ ⇑⇓ ⇑⇓ ⇑⇓ ⇑⇓ ⇑⇓ ⇑⇓
1. u1,1 u1,2 u1,3 u1,4 u1,5 u1,6 u1,7 u1,8 u1,9

2. u2,1 u2,2 u2,3 u2,4 u2,5 u2,6 u2,7 u2,8 u2,9

3. u3,1 u3,2 u3,3 u3,4 u3,5 u3,6 u3,7 u3,8 u3,9

4. u4,1 u4,2 u4,3 u4,4 u4,5 u4,6 u4,7 u4,8 u4,9

5. u5,1 u5,2 u5,3 u5,4 u5,5 u5,6 u5,7 u5,8 u5,9

6. u6,1 u6,2 u6,3 u6,4 u6,5 u6,6 u6,7 u6,8 u6,9

7. u7,1 u7,2 u7,3 u7,4 u7,5 u7,6 u7,7 u7,8 u7,9

8. u8,1 u8,2 u8,3 u8,4 u8,5 u8,6 u8,7 u8,8 u8,9

9. u9,1 u9,2 u9,3 u9,4 u9,5 u9,6 u9,7 u9,8 u9,9

But it should be emphasized that what pattern matching analysis attempts to give is
not tables like the following, which are insufficiently schematic:

(46) 0. Ann asked Bill what Ø to pick Ø up
1. Ann V O C S U V O P
2. S asked O C S U V O P
3. S V Bill C S U V O P
4. S V O what S U V O P
5. S V O C Ø U V O P
6. S V O C S to V O P
7. S V O C S U pick O P
8. S V O C S U V Ø P
9. S V O C S U V O up

While they are apparently valid in that they are not overspecifications, encodings
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like this are too specific to provide linguistically (and psychologically) significant
generalizations. The reason is, roughly, that subpatterns in (46) are too much
“accommodated” to contexts, and they will fail to reflect the “emergence” of
syntax. As I will discuss in some detail in Section 2.1.3, and in Chapter 3, Ap-
pendices A and B in more detail, the point is that, basically, there is an optimally
redundant encoding of (22) (and (30)). The encoding can be obtained by reducing
redundancy in (46). This point is related to another, equally important point of
optimal schematicity.

In this light, compare the C/D table in (46) with the one in (23). The difference
between their specifications is that, in (23), (i) there are fewer specifications (with
more blanks), and (ii) some specifications are different. I will defer detailed discus-
sion of these issues until Chapter 3.

2.4.3 Bridging two groups of subpatterns

In (23), two groupings can be easily recognized. One is the domain of ask, from 1
to 4, and another is the domain of pick (up), from 4 to 9. This point deserves a
mention, because, phenomenologically, it is rare for a subpattern contains more
than four units. This is because the n-arity of argument structure has this kind of
properties.

It is critical to note that the two groups of ask and (to) pick are “bridged” by S
V what S V d(what), encoded by subpattern 4 in (23). In a sense, it is a enzyme of
merger of ask and pick (up).

Some readers may wonder if subpattern 4 in (23) can be replaced by a weaker
one, such as:

(23) 0. Ann asked Bill what Ø to pick Ø up
49. what S (U) V d(what)

But this replacement nullifies our crucial assumption of a redundancy-based de-
scription, which enables overlapping. Note that the overlap of what with the first
domain is necessary for the composition of (30) and therefore (22) to be unique.
Furthermore, the overlap must contain V (X) because if it lacks (X), it wrongly
licenses expressions, such as:

(47) *Ann asked whati Ø to pick Ø i up Bill

Admittedly, it is redundant to have both (23)4 and 49. But PMA will not eliminate
this kind of redundancy, because a crucial use of it is made in its description of
natural language syntax.

2.5 Concluding Remarks
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In this chapter, I showed how forms such as Ann asked (him) the way, Ann asked
Bill what to pick up, are composed from respective sets of subpatterns, which one
may reasonably think are proper representations of words (and idiomatic phrases,
constructions). But this identification is possible only when words are thought to
be so structured that they remember optimal information of contexts in which they
occur. Thus, it is conceptually misguided to treat words as syntactically unstruc-
tured, isolated elements that must be inserted into, or associated to, “slots” of
certain templates, e.g., phrase markers. If words are what we have called subpat-
terns, then syntax “emerges” when words combine with each other.

1. It seems that verbs and prepositions differ minimally as to whether they agree for tense,
ignoring the fact that prepositions constitute an almost closed class.

2. It seems that this feeling corresponds to the distinction between syntax and morphology. As
I will discuss in Chapter 6 in some detail, there is no gap felt between was and killed in The
duckling was killed by John, though there are reasons to believe that the subject of kill is missing
there.

3. This parse is possible only for cases that Ross (1969) calls sluicing, such as follows.

i. Ann asked Bill how, but he didn’t know how to order such wines.

ii. I don’t know why, but Professor Y. is delighful today.

iii. I am sorry, but no one can smoke here.

Incidentally, this phenomenon can be seen as a special form of right-node raising (Ross 1967;
Postal 1974).

4. For details of Lindenmayer systems or L systems, see Rozenberg and Salomaa (1980),
Rozenberg and Salomaa, eds. (1992), and Vitányi (1980). Let me remark only on some relevant
properties of L systems here. A Lindenmeyer system G is a triple <S, P, A>, where:

i. S is a set of symbols, without the distinction between terminal and preterminal sym-
bols. S can be seen as a union of terminal and preterminal symbols such that S = VN ∪
VT.

ii. P is a set of “productions” of the form a1Lam → b1Lbn (a i, b i ∈ S).

iii. A is a special symbol, called an “axiom”, from which all derivations start. A may or
may not be in S.

Rewrites in an L system are said to be “parallel” in that all symbols of the input string have to be
rewritten at the same time. For example, G = <{a, b}, {a → aa, b → bb}, ab> generates a language
{ab, aabb, aaaabbbb, ...}, i.e., a2n

b2n
 (n ≥ 1). This means that it is a natural interpretation to see

derivational steps in L systems as “generations” in (cellular) development.

Note that it has important effects if an L system has “vacuous” productions of the form x
→ x. If a → a, b → b are added to P in G above, the generated language no longer is a2n

b2n
;

rather, it is a+b+.

Notes


