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1 Introduction

This paper presents a brief summary of a model of human
linguistic knowledge and performance called Pattern Lat-
tice Model (henceforth PLM) proposed and developed by
Kuroda and his colleagues (Kuroda 2009; O O 2009; O O
and 00 0O 2009; 00O 2010a; 0 O 2010b). The purpose of
this short paper is two-fold: the first aim is to clarify several
points that makes PLM distinct. The second aim is to show
that the basic tenets of Construction Grammar (henceforth,
CG) (Croft 2000; Fillmore 1988; Goldberg 1995; Goldberg
2006) (e.g., priority of “constructional” meanings over “lex-
ical” meanings) are natural consequences of an operation
called Unification over Parallel Simulated Error Correc-
tion (UPSEC) assumed under PLM and therefore CG can
be safely replaced by PLM.

2 What is the Pattern Lattice Model?

PLM is a form of usage-based model (UBM) of lan-
guage (Langacker 1988), but it is more than just yet an-
other form of UBM. It is a radically new form of UBM and
even provides a radical reformulation of it. In more ade-
quate terms, PLM is a strongly example-based process-
ing model of language, though it also has something to do
with grammar equated with “knowledge” of language dis-
tinguished from the processing mechanism of it. It is be-
cause PLM narrows possible forms of grammar drastically.
I will return to this issue in §3.2.

2.1 Strongly example-based processing

PLM implements the idea of strongly example-based lan-
guage processing (SEBLP). Example-based processing is a
special form of memory-based processing (MBP). A pro-
cessing is example-based if processing of new input are
carried out using examples stored in memory. How is an
example-based language processing carried out? The an-
swer is straightforward. It is carried out roughly in the fol-
lowing way:

(1) Suppose E ={ey,ez,...,en } represents the set of all
examples stored in memory. Given an input 7,

a. find a set of examples E' = { e, ez, ..., e, }, a
subset of E, that consists of all and only exam-
ples similar to ¢ with distance measure d. We
say e; is “close enough” to 1 if 0 < d(r,e;) < dg
where dg is a parameter that specifies the thresh-
old value. If the distance is standardized to “sim-
ilarity” measure s(z,¢;), we have 0 < s(¢,¢;) < 1.

b. select E” = {¢},é),...,¢, }(€ E’) such that the
semantics of ¢; and ¢; are compatible.

c. equate the semantics of 7 as the logical disjunc-
tion (or average) over the semantics of E”.

The degree of dependence on stored examples determines
the strength of memory-basedness. A processing is strongly
memory-based if processing of input depends on stored ex-
amples more than abstract(ed) structures like schemas.

2.2 The full memory hypothesis

What makes PLM distinct from many other theories of lan-
guage is the following hypothesis:

(2) The full memory hypothesis: A speaker of a lan-
guage L commands a “full memory” of linguistic ex-
perience (in implicit memory distinguished from “ex-
plicit memory (Milner, Corkin, and Teuber 1968)) to
process any expressions of L.

Admittedly, this is a controversial hypothesis. In fact, no
theory of language accepted in linguistics seems to take this
very seriously, but PLM dares to accept it, at least strategi-
cally,]) The reason is that, as I show, its acceptance offers
theoretical linguistics more gains than losses.

2.3 How to deal with interpretation

One of the most serious challenges to strongly memory-
based models like PLM is the seeming compositionality of
natural language semantics. It is often claimed that it re-
quires effective syntax and that memory-based models are
too weak to provide it. Its intent is that such effective syntax
is provided only by grammar.

The plausibility of this claim, however, can be illusion-
ary. Such a claim can be invalidated only when memory-
based models are shown to be able to deal with seeming
compositionality of natural language semantics. Unifica-
tion over Parallel Simulated Error Correction (UPSEC) was
designed for this purpose. It determines the interpretation
of input ¢ roughly in the following way:?

(3)  a. If there is ¢’ stored in memory such that r = ¢/,
equate #’s semantics with ¢”’s semantics.

DThe reason that PLM accepts the full memory hypothesis is that it
was developed as a theoretical extension of Robert Port’s Rich Phonology
presented in Port (2007, 2010). See Kuroda (2009) for relevant discussion.

2This paper only deals with its essential features. See Kuroda (2009)
for more details of UPSEC.
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Figure 1: Pattern lattice over the examples in (5).

b. If not, equate the semantics of ¢ with the aver-
age® of the semantics of E' = { e1,es,...,¢, }
such that ¢; € E is close enough to 7.

under the following principle:

(4) Principle of distributed resource allocation: for every
x; of a given instance e = [x1,x,...,X,] consisting of n
segments, identify resources r1, 12, ..., r, for interpre-
tation using patterns as close to e as possible and unify

i, 2, ..., Iy.

The crucial point is how to calculate e;’s closeness to target
t, or how to define a similarity measure between a given
pair of forms. A pattern lattice over instances defines a
good metrics for this similarity measure.?

Figure 1 diagrams the lattice over the 9 examples in (5)
which consists of examples matching pattern S V 01 0,.5

(5) (a) he faxed Ann the_letter; (b) he emailed Ann
the_letter; (c) he sent Ann the_letter; (d) he faxed Bill
the_letter; (e) he emailed Bill the_letter; (f) he sent Bill
the_letter; (h) he faxed Carol the_letter; (i) he emailed
Carol the_letter; (j) he sent Carol the_letter

3Traditional linguistics does tell us what the “average” of semantics
is, but it can be easily specified as a logical disjunction if meanings are
represented as feature vectors.

#There are additional minor assumptions, however. It is assumed that
each edit has the same amount of cost, which need not be generally true.

3 The diagram was generated by pattern lattice builder de-
veloped by Yoichiro Hasebe (Doshisha University) and made freely avail-
able athttp://www.kotonoba.net/rubyfca/pattern.

Every pattern in pattern lattice is assigned a “rank.”
Roughly, the rank of a pattern is equal to the number of
lexically realized segments. Thus, the leftmost pattern, [_,
—, —, —], is at rank 0. Patterns on the second column from
left, [he, —, _, _], [, faxed, _, _], [, emailed, _, _], [,
sent, _, _], [, —, Ann, _], [, _, Bill, _], [, _, Carol, _],
and [, _, _, the letter ], are at rank 1, and so on.

We always have only 1 pattern at rank O, [—, —, —, _].
This is called the “top” (T) of the pattern lattice. The pat-
tern at rank O encodes the co-occurrence information of a
given set of instances in the most abstract way. Patterns
with no lexical specification are called either “nonlexical
pattern” or “abstract patterns.”

We have 9 patterns at rank 1, i.e., [he, _, _, _], [, faxed,
—, —], [—, emailed, _, _], [, sent, _, _], [, —, Ann, _],
[—, —, Bill, _], [, —, Carol, _] and [_, _, _, the letter ],
are called “lexical patterns” in contrast with “superlexical
patterns” defined below.

We have 22 patterns at rank 2 and 24 patterns at rank 3,
respectively. At rank 3, we have: [he, faxed, _, _], [he,
emailed, _, _], [he, sent, _, _], ... At rank 4, we have:
[he, faxed, Ann, _], [he, emailed, Ann, _], [he, sent, Ann,
_], .... These patterns are called “superlexical/supralexical
patterns” in contrast with “lexical patterns” defined above.

In a pattern lattice, a pattern at rank k is an abstraction
over a set of either instances or patterns at rank k + 1. This
holds for every k recursively. In general, patterns at rank k
have k lexical items. Patterns at rank k for instances with
n segments are called (i) nonlexical when k = 0; (ii) lexical
when k = 1; and (iii) superlexical when 1 < k < n.

Note that a pattern lattice defined in this way specifies,
in a natural and unambiguously way, the accessibility hi-
erarchy for resources needed for interpretation. A nice
thing about this is that it enables us to unify noncomposi-
tional and compositional modes of interpretation. Purely
compositional interpretation consists of the lexical seman-
tics specified by lexical patterns at rank 1. They are more
or less compositional because these patterns have just one
lexical item and do not specify higher-order, co-variational
semantics among multiple items. If the exploitation of pat-
terns at rank k are, by definition, always less preferred by
that of patterns at rank k+ 1, it follows that the semantics of
lexical patterns are always the “last resort.” Clearly, this is
a definition that unifies the compositional and noncomposi-
tional modes of semantic interpretation.

2.4 How UPSEC works under PLM

It should be clear now that a pattern lattice is useful to deter-
mine the set of similar instances. Suppose, for example, that
(5b) = he emailed Ann the letter is a new input recognized
for the first time. This means that no semantic information
in the memory is available for its meaning. To construct it,
the system does the following by accessing a set of exam-
ples via four superlexical patterns at rank 3, i.e.,

(6) a. pl =[_, emailed, Ann, the letter ],

o

[
b. p2 = [he, _, Ann, the letter],
p3 = [he, emailed, _, the letter], and
[

d. p4 = [he, emailed, Ann, _]



which are generated via SPEC. Assume additionally that
pl, p3 and p4 have no other instances than (5b).% In this
case, the only source available for approximation of the se-
mantics of (5b) is to average the semantics of the instances
of p2, i.e., [he, faxed, Ann, the letter] and [he, sent, Ann,
the letter] which are at the leaves”) of the lattice in Figure 1.

2.5 No need for constructions per se

In a narrow sense, PLM is a model of linguistic forms. PLM
is not a self-contained theory of language in this specific
sense. But it is quite straightforward to see how semantics
works in PLM as far as we assume that every forms is stored
in couple with its meaning.®)

Note that the PLM-based description of the interpretation
of (5b) can replace what Goldberg (1995, 2006) purported
to account for in terms of her “ditransitive construction.”
It is interesting to see that she tries to attribute construc-
tional meaning to [, —, —, _] at rank 0, corresponding to
SV O;0; or NP V NP NP, which is more abstract than
lexical patterns at rank 1. This is exactly why Goldber-
gian account cannot be free from overgeneralizations.

By contrast, UPSEC describes the same set of phenom-
ena without positing any constructions, and I claim that this
is exactly what makes PLM more explanatory and CG. I
want to discuss this issue in more detail.

CG is a linguistic theory that attracts many researchers.
One of its crucial assumptions is the independence of “con-
structional” meanings from “lexical” meanings. But, as we
saw in the presentation above, PLM accounts for the same
phenomenon without positing constructions and the like.
All what PLM assumes for this is the following:

(7)  a. Semantic interpretation of input ¢ is determined
either by a direct memory access to #’s meaning
stored in memory or by a “transfer” from the se-
mantics of examples similar enough to 7.

b. A pattern lattice specifies the range of accessibil-
ity required to determine what examples count as
“similar enough.”

So, we may ask, What relation can PLM have to CG?
Roughly speaking, there are three possibilities: (i) PLM is
one of the garden variety of CG (PLM as a variation of CG),
(i) PLM and CG are different frameworks but they sup-
plement each other’s weaknesses (PLM as a supplement to
CQG), and (iii) CG is a derivative of, if not a variant of, PLM
that all stipulations and predictions from CG are derivable
from PLM (PLM as a replacement to CG). I believe the ar-
gument so far provided strong evidence for (iii).

In the view of PLM, constructions are best characterized
as derivatives of a huge pattern lattice that is automatically
and blindly constructed over a set of instances.” Note that
a pattern lattice specifies all possibilities for schematic rep-
resentations at all possible levels of abstractness. In short,
PLM knows no distinction between constructions and

©Note that this assumption is natural because it exactly corresponds to
the fact that email was never used in the ditransitive construction.

7)Usually, the bottom (L) of a pattern lattice is not drawn to save space.

®1Tn fact, it is unnatural to assume that a speaker stores a form and a
meaning independently, without any interconnectedness, when he or she
stores a piece of speech s.

9This paper does not deal with the question what constructs a pattern
lattice. This is an open question.

nonconstructions as far as forms are equated with their
semantics. But does this mean that PLM is insufficient?
I argue not. First of all, what are constructions after all?
First of all, there is no known clear-cut boundary between
constructions and nonconstructions. In a sense, identifica-
tion of constructions is a matter of degree. If so, the real
problem is how to measure the degrees of goodness for the
identification of constructions. Note that this is exactly the
same kind of problem that we have in the PLM. In other
words, CG can never be better than PLM unless it has an
explicit mechanism for automatic identification of construc-
tions, which I claim is not satisfied with any version of CG.

If we assume PLLM, some of the crucial tenets such as the
following automatically follow:

(8) a. The crucial assumptions (e.g., independence of
“constructional” meanings to “lexical” mean-
ings) and theoretical predictions (e.g., acceptabil-
ity pattern accounted for in terms of particular
constructions) that make CG explanatory and at-
tractive to the linguistics community are plain
consequences of PLM. This means that CG need

not be assumed as far as we accepts PLM.

b. PLM makes nontrivial predications (e.g., that
construction effects are distributed and you can
not usually single out a construction that is solely
responsible for a particular phenomenon, that
different constructions have different degrees of
“constructionhood”) that are not directly avail-
able in CG.

c. PLM can model several aspects of human lan-
guage (e.g., formulaicness) that CG cannot.

In the view of PLM, constructions are part of side-effects
of the USPEC under a pattern lattice. If the goal of linguis-
tics is to identify “constructional meanings” as distinct from
lexical meanings and describe them properly, UPSECP un-
der PLM should suffice. In other words, linguists do not
need to say explicitly that constructions (should) exist
when they want to account for construction effects.

PLM does not say, however, that there are no construc-
tions whatever. They should exist, but what is really chal-
lenged by PLM account is how to identify constructions.
The point is that linguistics will never make any remarkable
achievement if constructions are identified using linguists’
intuition alone.

3 Discussion

3.1 Limitations of PLM

No matter how many benefits are associated with it, PLM
cannot be without limitations, if not shortcomings, of its
own, at least in the current implementation. Let me specify
a few of them.

First of all, PLM makes sense only when we accept the
full memory hypothesis. This position is rather costly be-
cause it is not so easy to defend such position, though
Kuroda (2010) offers several arguments for this. So, it
would be safer to admit that PLM can happen to rely on
a possibly unfalsifiable assumption. In fact, it is an open
question if all utterances perceived, rather than most of
them, are stored in (implicit) memory. The crucial point,



however, is that even if they are not all what people heard
and understood, human linguistic performance is very
likely to rely on a tremendous amount of exemplar mem-
ory than most linguist are willing to admit, and that this
requires human linguistic competence to take another form
than generative linguists tend to (hastily) assume. This is
what the full memory hypothesis really means.'?

Second, the full memory based modeling is, as ex-
pected, computationally quite demanding. This is more se-
rious about the number of segmentation. For example, the
computational complexity increases exponentially with the
number of segments. For example, when a pattern has more
than 7 segments, the overall computational time gets nearly
unacceptable. Compared to this, the impact of the number
of instances is much milder. The increase of computational
cost is just logarithmic. We must admit that it is an open
question why search for examples can be so fast in human
language processing.

Third, as stated above, no reliable statistical measure is
developed to differentiate “good” patterns from “bad” pat-
terns. In the current implementation, z-score is tentatively
used for this purpose, but there are several problems asso-
ciated with it. One of them is that rank-relative produc-
tivities of patterns are not guaranteed to obey the Gaussian
distribution. If this assumption is not met, it is inadequate
to make use of z-score to represent rank-relative produc-
tivity: z-score is used only because no better alternative is
known. We will need to develop a sophisticated, probably
more complex measure to achieve more natural results.

Another issue associated with this is that it is not fully
accounted for what impact speech errors have on language
processing. The full memory hypothesis forces us to as-
sume that incorrect forms of utterance are stored in implicit
memory as well as correct ones, but this sounds somewhat
ridiculous. We will need to introduce a mechanism that
guarantees incorrect forms of utterance cause as little harm
as possible.

Finally, one of the most obvious limitations of PLM is
that it provides no straightforward mechanism to deal with
so-called syntactic alternations. Even simple alternations
like question formation require certain tricks. To many lin-
guists, this may look disappointing because they can be eas-
ily captured with syntactic movements, but we have a trade-
off and it is not easy to tell, at least for the moment, if this
is really a bad thing.

3.2 PLM-compatible forms of grammar

PLM frees linguists from the burden for identification of
constructions. It is suggested that constructions are epiphe-
nomenal. By the same token, PLM places a far lesser ex-
planatory importance to “schemas.” The reason is roughly
that, under the full memory hypothesis, schemas are merely
indices of instances stored in the memory. They do not
“sanction” or “license” any new instances. What they do
is two-fold. For positive instances, they determine the sets
of instances available for the calculation of the semantics of
given inputs. For negative instances, schemas block their
access to instances potentially available for the semantic
computation.

101ncidentally, a view on artificial intelligence and cognitive science
fully compatible with this thesis is presented and compellingly argued for
in works by Jeff Hawkins such as (2004).

What does this mean after all? To put it most crudely,
schemas are not an explanatory concept any more, at
least unless we already tell exactly what examples are in-
stances of what schemas. I’m afraid this condition is not
satisfied at all in the current situation of Cognitive Lin-
guisitcs/Construction Grammar. I believe this is why it fails
to replace Generative Linguistics.
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